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COMPLEX ANALYSIS

Answer any three from the following. 3×20=60

1. (a) Show that
0
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z
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 does not exist. 4

(b) Check the continuty and differentiability of the function  f z  at the point 0z   where
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(c) Show that a real function of a complex varibale either has derivative zero or the
derivative does not exist. 4

(d) Find the residue of  
 22 2

1f z
z a




 at z ai . 4

2. (a) Find the analytic function  f z u iv   if
 

cos sin
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yx x eu v
x y

 
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
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8

(b) If u and v are harmonic functions conjugate to each other in some region G then show
that u and v must be constant. 4

(c) Evalute :
 22

1
2 1

zt

C

e dz
i z 
  if 0t   and C is the circle 3z  . 8

3. (a) Let C be the boundary of a square of vertices at the point 0, 1, 1 ,z z z i z i    

taken in the counterclockwise sense. Show that  4 1z

C

e dz e    . 8

(b) Show that the function  f z  defined by

 
 2Im

, 0

0, 0

z
zf z z
z


  
 

satisfied the C-R equation at the origin yet it is not differentiable there. 8

(c) Expand cos z  into Taylor series about the point
2

z 
  and find the radius of

convergence. 4

4. (a) Check the differentiability of the function    cos sinxf z e y i y  . 4



(b) Using Cauchy residue theorem, evaluate
   
   

2 2

2

sin cos

1 2C

z z
dz

z z

  

   where C is the

circle 3z  . 6

(c) Evaluate :
2

0

cos3
5 4cos

d
 


  7

(d) If   1
1

zf z
z





, determine  2 3f i  . 3

5. (a) Evaluate
2

6
0 1

x dx
x



 10

(b) Determine a conjugate harmonic function u, where  , cosxu x y e y  in the complex
plane C. 6

(c) Define extended complex plane. How do you represent geometrically on a sphere ?
4

6. (a) Prove the necessary conditions that the function f u iv   is differentiable at a point

0 0 0z x iy   is that , , ,x y x yu u v v  exists and ,x y x yu v v u   . 7

(b) State Liouville’s Theorem. Derive the fundamental theorem of algebra using it. 7

(c) Prove or disporve: The point 0z   is the only ingularity of the function

  1sin 1f z
z

   
 

 and 0z   is a simple pole. 6
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MATRICES

Answer any three questions. 3×20=60

1. (a) Prove that the set of vectors       1, 2, 2 , 2,1, 2 , 2, 2,1  is linearly independent in
3 .

(b) Find the conditions on ,a b , so that the vectors       , ,1 , ,1, , 1, ,a b b a a b  is
linearly dependent.

(c) For what values of k does the set       ,1,1 , 1, ,1 , 1,1,S k k k  form a basis for
3 .

(d) Prove that the set       2,1,1 , 1, 2,1 , 1,1, 2S   is a basis for 3 . 5+5+5+5

2. (a) Show that the set   3, , : 0S x y z x y z      forms a subspae of 3 . Find a

basis and dimension of the subspace S of 3 .

(b) Find the inverse of the matrix A using elementary row operations on A.

(c) Solve the system of equations 3 0, 2 0, 3 2 4 0x y z x y z x y z         .
7+7+6

3. (a) Let 2 3:T    be defined by    1 2 1 2 1 1 2, , , 2T a a a a a a a   . Let   be the

stanadard basis for 2  and       1,1, 0 , 0,1,1 , 2, 2, 3  . Compute  T 

 . If

    1, 2 , 2, 3  , compute  T 


. 7+5

(b) Find the rank of the matrix

1 2 3 1 1
1 4 0 1 2
0 2 3 0 1
1 0 0 0 0

 
 
 
 
 
 

. 8



4. Let V be a vector space, and let :T V V  be linear. A linear subspace W of V is said to

be T- invariant if  T x W  for every x W , that is,  T W W . If W is T-invariant, we

define the restriction of T on W to be the function :WT W W  defined by    WT x T x

for all x W .

(a) Prove that the subspaces    0 , ,V R T  and  N T  are all T-invariant.

(b) If W is T-invariant, prove that WT  is linear.. 15+5

5. (a) Prove that the product of the eigen values of a square matrix A is det A.

(b) If   be an eigen value of a non-singular matrix A, then prove that 1  is an eigen
values of 1A .

(c) Show that the eigen values of a real symmetric matrix are all real.

(d) Find the eigen values and eigen vectors of the matrix
1 3
4 5
 
 
 

. 5+5+5+5

6. (a) Find a matrix P such that 1P AP  is a diagonal matrix, where
2 2 1
1 3 1
1 2 2

A
 
   
 
 

.

(b) Determine the conditions for which the system of equations 1,x y z  

2x y z b   , 25 7x y az b    admits of (i) only one solution, (ii) no solution,
(iii) many solutions. 10+10

_____________



LINEAR ALGEBRA

Answer any three questions. 3×20=60

1. (a) Prove that the intersection of two subspaces of a vector space V over a field F is a
subspace of V. Is the union of two subspaces of V a subsapce of V ? Justify.

(b) Prove that the set of vectors       1, 2, 2 , 2,1, 2 , 2, 2,1  is linearly independent in
3R .

(c) Let   3, , : 0S x y z R x y z     . Prove that S is a subspace of 3R .

(d) Show that   3, , : 0, 2 0S x y z R x y z x y z         is a subspace of 3R .
Find the dimension of S. (4+3)+4+3+(3+3)

2. (a) Examine if the set S is a subspace of the vector space 2 2R  , where

(i) S is the set of all 2×2 real diagonal matrices;

(ii) S is the set of all 2×2 real symmetric matrices.

(b) Let V be a real vector space with  , ,    as a basis. Prove that the set

 , ,      is also a basis of V.

(c) Define rank and nullity of a linear transformation.

(d) Let V and W be vector spaces over a field F. Let :T V W  be a linear
transformation. Prove that Kernel of T is a subspace of V. (3+3)+5+4+5

3. (a) Define a real vector space.

(b) Define basis and dimension of a vector space V over a field F.

(c) Define kernel and image of a linear mapping.

(d) Let V and W be vector spaces over a field F. Let :T V W be linear transformation

and  1 2, , ..., n    be a basis of V. Prove that the vectors

      1 2, , ..., nT T T    generate image of T.



(e) Define linear dependence and linear independence of a set of vectors. 5+4+4+4+3

4. (a) If      1,1, 2 , 0, 2,1 , 2, 2, 4      , determine whether   is a linear

combination of   and  .

(b) Let V be a vector spaces over a field F and let , V  . Then prove that the set

 : ,W c d c F d F       forms a subspace of V.

(c) Let 3 2:T R R  be a linear transformation defined by

   , , 3 2 , 3 2T x y z x y z x y z     .
Find the matrix of T relative to the ordered bases

(i)      1, 0, 0 , 0,1, 0 , 0, 0,1  of 3R  and    1, 0 , 0,1  of 2R .

(ii)      0,1, 0 , 1, 0, 0 , 0, 0,1  of 3R  and    0,1 , 1, 0  of 2R .

(d) Let 3 3:T R R  be a transformation defined by    , , , , 0T x y z x y . Prove that T
is linear. 5+5+6+4

5. (a) Show that the set       2, 3,1, 4 , 3, 2, 4,1 , 1,1,1,1S   is linearly dependent in 4R .

(b) The matrix of a linear transformation 3 2:T R R  relative to the ordered bases

(0, 1, 1), (1, 0, 1), (1, 1, 0) of 3R  and (1, 0), (1, 1) of 2R  is 1 2 4
2 1 0
 
 
 

. Find T.T.

(c) Let V and W be vector spaces over a field F. Let :T V W  be a linear

transformation. Then prove that T is injective if and only if    ker T   .

(d) Define isomorphism of a linear transformation. 5+6+7+2

6. (a) Find k R so that the set       1, 2,1 , , 3,1 , 2, , 0S k k  is linearly dependent in
3R .

(b) Define inverse of a linear transformation.



(c) Let V and W be vector spaces over a field F. Let :T V W  be a linear
transformation. Then prove that if T be linear then inverse of T is also linear.

(d) Find dimension of S T , where S and T are subspaces of the vector space 4R  given
by

  4, , , : 2 3 0S x y z w R x y z w     

  4, , , : 2 3 0T x y z w R x y z w      . 5+3+6+6

_____________



VECTOR CALCULUS AND ANALYTICAL GEOMETRY

Answer any three questions. 3×20=60

1. (a) If a b a b  
    then show that a  and b


 are perpendicular.. 4

(b) If ,a b
  be two vectors such that 10a  , 1b 


 and . 6a b 

 , then find the value of

a b


. 4

(c) Show that     2
2

1f r dr r f r
r r dr

 
  
 

  , ˆˆ ˆr xi yj zk  
 , r r  . 6

(d) Show that the vector       ˆˆ ˆ2 2 2F x yz i y xz j z xy k     


 is irrotational. Find a

scalar point  , such that F  
 

. 6

2. (a) Prove that   2. f f  
 

. 4

(b) Find 


 where nr  , r r   and ˆ ˆ ˆr xi yi zi  
 . 4

(c) Reducing to canonical form, discuss the nature of the conic

2 24 4 2 26 9 0x xy y x y      . 6

(d) A plane passing through a fixed point  , ,a b c  cuts the axes in A, B and C. Show that

the locus of the center of the sphere OABC is 2a b c
x y x
   . 6

3. (a) Define divergence of a vector point function. 4

(b) If f and g be two scalar point functions, then prove that  fg f g g f    
  

. 4

(c) Find the equation of the right circular cone which conains three positive coordinate axes.
6



(d) Find the equation of the right circular of radius 3 and whose axes is
1 2 3

2 3 6
x y z  
 


. 6

4. (a) Find the nature of the conic 2 24 2 2 6 0x xy y x y      . 4

(b) Find the equation of the sphere having the center at (2, –3, 4) and radius equals to
5 unit. 4

(c) Find the equation of the sphere which passes through the points (1, 0, 0), (0, 1, 0),
(0, 0, 1) and which touches the plane 2 2 15x y z   . 6

(d) Find the equation of the cone whose vertex is the point (1, 2, 3) and guiding curve is
the circle 2 2 2 9x y z   , 1x y z   . 6

5. (a) Find the center and the radius of the sphere given by

 2 2 22 2 4 6 15x y z x y z      . 4

(b) Find the equation of the sphere passing through the four points (0, 0, 0), (a, 0, 0),

(0, b, 0) and (0, 0, c). 4

(c) Find the equation of the cylnder whose generators are parallel to the straight line

1 2 3
x y z
 


 and whose guiding curve is 2 2 9, 1.x y z   6

(d) Find the center and radius of the circle 2 2 2 25, 2 2 9 0x y z x y z       . 6

6. (a) Find the eccentricity and foci of
2 2

1
25 16
x y
  . 4

(b) For the hyperbola 2 216 9 144x y  , find the vertices. 4

(c) Show that a necessary and sufficient condition for a scalar point function   to be

constant is that 0 


. 6

(d) For every scalar point function  , prove that curl of grad 0  . 6

_____________


